Thermochemistry

Thermochemistry


Calorimetry


$3.99
4.0for iPhone, iPad
Roman Volinsky
Developer
786.4 KB
Size
Dec 4, 2023
Update Date
Education
Category
4+
Age Rating
Age Rating
4+
Apps in this category do not contain restricted content.
9+
Apps in this category may contain mild or occasional cartoon, fantasy or real-life violence, as well as occasional or mild adult, sexually suggestive or horrifying content and may not be suitable for children under 9 years of age.
12+
Apps in this category may contain occasional mild indecent language, frequent or intense cartoon or real-life violence, minor or occasional adult or sexually suggestive material, and simulated gambling, and may be for children under 12 years of age.
17+
You must be at least 17 years old to access this App.
Apps in this category may contain frequent and intense offensive language; Frequent and intense cartoon, fantasy or realistic violence: frequent and intense adult, scary and sexually suggestive subjects: as well as sexual content, nudity, tobacco, alcohol and drugs, may not be suitable for children under 17 years of age.
Thermochemistry Screenshots
Thermochemistry posterThermochemistry posterThermochemistry posterThermochemistry posterThermochemistry poster
Thermochemistry posterThermochemistry posterThermochemistry poster

About Thermochemistry

Thermochemistry helps in evaluation of enthalpy or heat release/absorption of a system undergoing numerous temperature changes and phase transitions. The calculations take advantage of known values of heat capacity at constant pressure (Cp) and molar or per gram enthalpy of phase transition. Amount of compound can be defined in grams or moles, in a way that Cp and enthalpy units would match.
App provides enthalpy values for each step. Negative enthalpy points to exothermic process – heat release, while positive one to endothermic - heat absorption. °C and K are interchangeable.
Calorimetry section provides means for evaluation of the heat capacity of calorimeter and for finding equilibrium temperature of mixed system. Forward arrow button sets the final temperature of the mixture. Backward arrow button sets missing temperature or heat capacity of one of the components. Enthalpy values show heat flow for each component.

Example of problems solved by application (screenshots):

Problem 1: Calculate the amount of energy required to change 100.0 g of ice at -15.0 °C to steam at 125.0 °C. Known values:

Heat of melting = 334.16 J g¯1
Heat of vaporization = 2259 J g¯1
specific heat capacity for solid water (ice) = 2.06 J g¯1 K¯1
specific heat capacity for liquid water = 4.184 J g¯1 K¯1
specific heat capacity for gaseous water (steam) = 2.02 J g¯1K¯1

Solution:

1) Heating of 100.0 g of ice from -15.0°C to 0.0°C:
(100.0 g) (15.0 K) (2.06 J g¯1 K¯1) = 3090 J
2) Melting of 100.0 g of ice:
(100.0 g) (334.16 J g¯1) = 33416 J
3) Heating of 100.0 g of liquid water from zero to 100.0 Celsius:
(100.0 g) (100.0 K) (4.184 J g¯1 K¯1) = 41840 J
4) Evaporations of 100.0 g of liquid:
(100.0 g) (2259 J g¯1) = 225900 J
5) Heating of 100.0 g of steam from 100.0 to 125.0 Celsius:
(100.0 g) (25.0 K) (2.02 J g¯1 K¯1) = 5050 J

6) Summation of the results:
3090 + 33416 + 41840 + 225900 + 5050 = 309.3 kJ

Problem 2: Determine the heat capacity of a coffee-cup calorimeter. During calibration 100.0 g of water at 58.5 °C has been added to 100.0 g of water, already in the calorimeter, at 22.8 °C. Calculate the heat capacity of the calorimeter in J/°C, if final temperature of the water is 39.7 °C. (Specific heat of water is 4.184 J/g °C.)

Solution:

1) Heat given up by warm water:
q = (100.0 g) (18.8 °C) (4.184 J/g °C) = 7865.92 J

2) Heat absorbed by water in the calorimeter:
q = (100.0 g) (16.9 °C) (4.184 J/g °C) = 7070.96 J

3) The difference was absorbed by the calorimeter:
7865.92 - 7070.96 = 794.96 J

4) Calorimeter constant:
794.96 J / 16.9 °C = 47.0 J/°C

Problem 3: Determine the final temperature when 10.0 g of aluminum at 130.0 °C mixes with 200.0 grams of water at 25.0 °C.

Please note the starting temperature of the metal is above the boiling point of water. In reality, the sample may vaporize a tiny amount of water, but we will assume it does not for the purposes of the calculation.

Solution:

1) The colder water will warm up and the warmer metal will cool down. The whole mixture will equilibrate up at the same temperature. The energy which "flowed" out of the warmer metal equals the energy which "flowed" into the colder water:

Qaluminum = Qwater
(10) (130 - x) (0.901) = (200.0 )(x - 25) (4.18)

117.13 - 0.901x = 83.6x - 2090

x = 26.12 °C.

Important! Water didn’t cross temperature of phase transition – vaporization; otherwise calculation would be more complex.

Calculation of reaction standard Gibbs free energy:
For the general reaction aA + bB -> cC + dD
ΔG°rxn = cΔGf°(C) + dΔGf°(D) - aΔGf°(A) - bΔGf°(B)

Example: Calculate the Gibbs free energy for the following reaction at 25 °C.
Cu (s) + H2O (g) -> CuO (s) + H2 (g)
ΔG°rxn = ΔGf°(CuO (s)) – ΔGf°(H2O (g)) = (–129.7 kJ/mol) – (–228.6 kJ/mol)
= 98.9 kJ/mol
ΔGf° = 0; for elements in their standard state by definition.
At equilibrium, ΔG = 0!


Important points

Application uses dot as a decimal separator.

Special attention should be paid for units’ consistency.
Show More

What's New in the Latest Version 4.0

Last updated on Dec 4, 2023
Old Versions
Compatibility update.
Show More
Version History
4.0
Dec 4, 2023
Compatibility update.
3.8
Feb 2, 2022
Compatibility update.
3.7
Jul 18, 2021
Compatibility update.
3.6
May 13, 2021
Compatibility update.
3.4
Jan 7, 2021
Compatibility update.
3.2
Oct 29, 2020
Compatibility update.
3.0
Apr 2, 2020
Compatibility update.
2.6
Feb 29, 2020
Update of the user interface.
2.4
Dec 12, 2018
Compatibility update.
2.1
Feb 15, 2018
Compatibility update.
2.0
Nov 28, 2017
Compatibility update.
1.8
Jul 28, 2017
Compatibility update.
1.7
Mar 18, 2017
Compatibility update.
1.6
Nov 8, 2016
Compatibility update.
1.5
Jul 8, 2016
Compatibility update.
1.2
May 6, 2016
Compatibility update.
1.0
Mar 24, 2016

Thermochemistry Price

Today:
$3.99
Lowest:
$2.99
Highest:
$3.99

Thermochemistry FAQ

Click here to learn how to download Thermochemistry in restricted country or region.
Check the following list to see the minimum requirements of Thermochemistry.
iPhone
Requires iOS 16.0 or later.
iPad
Requires iPadOS 16.0 or later.
Thermochemistry supports English

Thermochemistry Alternative

You May Also Like

Get more from Roman Volinsky